Grid vs Random search w scikit-learn – co powinieneś wiedzieć o doborze parametrów?

Co ma decydujący wpływ na efektywność w procesie klasyfikacji? Od razu nasuwa się odpowiedź algorytm, ale pamiętajmy nawet najlepszy/najmodniejszy algorytm nie zadziała bez skrupulatnie dobranych parametrów. Jak je dobierać, na co zwrócić uwagę oraz czy losowe przeszukiwanie przestrzeni jest lepsze od podejścia uczesanego wyczerpującego?

Continue reading

Sieć konwolucyjna w Tensorflow do klasyfikacji cyfr z MNIST

Trzeci wpis z serii związanej tworzeniem sieci neuronowych w Tensorflow, tym razem budujemy sieć konwolucyjną do klasyfikacji cyfr z MNIST. Omawiam idee operacji konwolucji dla sieci neuronowych oraz jak ją poprawnie zaimplementować w Tensorflow. W stosunku do poprzednich wpisów z serii sieć ta osiąga najlepszą dokładność klasyfikacji równą 0.9880.

Continue reading