Krzywa ROC (Receiver Operating Characteristic) pozwala na graficzną wizualizację jakości klasyfikatora przy zmieniającym się poziomie odcięcia dla klas. W tym tutorialu pokażę Ci sposób jej wyznaczania oraz przedstawię intuicję jak ją wykorzystać do interpretacji twojego modelu.
Continue readingPosts Tagged → scikit-learn
Krzywa Precision-Recall jak ją wykreślić i zinterpretować
Jak narysować i zinterpretować krzywą precision-recall dla klasyfikatora. W artykule pokażę Ci krok po kroku sposób jej wyznaczania teoretycznie oraz praktycznie w scikit-learn. Ponadto, dowiesz się jak ją interpretować, kiedy stosować oraz jak na jej podstawie porównać dwa modele.
Continue readingPrecision, recall i F1 – miary oceny klasyfikatora
Tutorial o tym, jak mierzyć jakość klasyfikatora i dlaczego zwykła dokładność (ang. accuracy) to często za mało. Wyjaśniam intuicję i na przykładach pokazuję o co chodzi w: precision, recall oraz F1
Continue readingModele regresji liniowej szybko i łatwo z scikit learn
Rozmawiająć z osobami, które zawodowo wykorzystują metody analizy danych byłem zaskoczony jak wiele modeli predykcyjnych opartych jest na regresji liniowej. Jest to jedna z podstawowych technik w arsenale analityka, stosukowo prosta w implementacji oraz zrozumieniu, a jednak niezwykle efektywna i użyteczna. Dzięki bibliotece scikit-learn jesteśmy w stanie w kilku wierszach kodu python’a zaimplementować jej podstawowe rodzaje.
Continue readingGrid vs Random search w scikit-learn – co powinieneś wiedzieć o doborze parametrów?
Co ma decydujący wpływ na efektywność w procesie klasyfikacji? Od razu nasuwa się odpowiedź algorytm, ale pamiętajmy nawet najlepszy/najmodniejszy algorytm nie zadziała bez skrupulatnie dobranych parametrów. Jak je dobierać, na co zwrócić uwagę oraz czy losowe przeszukiwanie przestrzeni jest lepsze od podejścia uczesanego wyczerpującego?